
An Exploration of Turing Pi
Based Edge Cloud

Sdmay24-03
Owen Perrin, Kale Kester, Nick Bergan, Andrew 

Phelps, Owen Hening, Cooper Caruso
Advisor: Akhilesh Tyagi

Introduction
Problem: While consumer cloud offerings like Amazon 
Web Services, Azure, or Google Cloud offer 
services which abstract resource consumption but 
provide a medium to deploy applications, some use 
cases necessitate a locally administered private cloud

Solution: Our team will create a proof of concept which 
explores fundamental cloud principles, to develop a 
private cloud using the Turing Pi 2.

Design Requirements

Hardware Requirements:
• The private cloud will be deployed on a Turing Pi 2
• The system will be able to support between 1-4 
compute modules at any time

Cloud and Containerization Requirements:
• Scale containerized applications across all clusters 
according to their resource needs
• Web API to deploy scalable containerized 
applications to the private cloud
• Expose API endpoints which support blob storage
• Robust monitoring via its interface which reports 
functional status (e.g. nominal, process failures) and 
resource utilization
• Support a containerized video streaming application
• Performance improvement for scalable containerized 
applications as more compute clusters are added

Constraints:
• The blob storage will support at least 10 users 
concurrently downloading and/or uploading
• The containerized video streaming application, when 
deployed, will support 3 simultaneous streams with a 
3500 Kbps bitrate (1080p30)
• The blob storage will have an effective throughput of 
at least 15 Mbps upload and download
• Files of up to 32Gb will be supported for upload and 
download by the blob storage

Context
Intended Users and Use Cases:

A data-sensitive user would also take advantage of this in-
house, locally hosted server and workflow platform as it 
replicates the advantages of cloud-based scalability with 
the addition of having absolute control 
over the implementation in terms of security and 
accessibility.

Small business owners could make use of a similar 
platform and design to either run a handful of 
low resource-intensive programs or test out the concept of 
a private cloud based on scalable containers.

Tests and Results
Subsystems to test:
• Private Cloud Stack

• Implemented Software Application

• DFS

• Hardware connection to Internet

• Overall management capabilities

Testing Method:
• Unit tests, and White Box Testing

• Interface, Integration, and partial or whole system

Maximum Tested Performance:
• 41 MBPS transfer speed within the DFS storage

• 3.5 MBPS transfer speed between the DFS to 

either local storage or ethernet, pinned to a single node

• 4.1 MBPS from UI to DFS, through the entire system

Design Approach Technical Details

Technology Used:
• Turing Pi 2 with 

3 compute modules

• Kubernetes – Cloud 

abstraction layer

• Django – API

• Kubgres – 

Rational Database

• Ceph – DFS

• NGINX – Reverse Proxy 

Server
• React – User InterfaceFig. 1 High-level design diagram of the cloud system. Higher 

levels of abstraction devolve into specific hardware as the 
diagram moves from top to bottom. Each main user of the cloud 
is also shown.

Fig. 2 The User Interface implementation. The UI displays the 
files that have been uploaded along with options to download 
and delete them. Uploading files is also an option through the 
UI.


